43.6 Problem number 856

\[ \int \frac {e^{\frac {-x^2+x \log \left (x^2\right )+\log \left (\frac {16-\log (3+x)}{e}\right )}{x}} \left (95 x-16 x^2-16 x^3+\left (-6 x+x^2+x^3\right ) \log (3+x)+(-48-16 x+(3+x) \log (3+x)) \log \left (\frac {16-\log (3+x)}{e}\right )\right )}{-48 x^2-16 x^3+\left (3 x^2+x^3\right ) \log (3+x)} \, dx \]

Optimal antiderivative \[ -{\mathrm e}^{\ln \left (x^{2}\right )+\frac {\ln \left (\left (-\ln \left (3+x \right )+16\right ) {\mathrm e}^{-1}\right )}{x}-x} \]

command

integrate((((3+x)*log(3+x)-16*x-48)*log((-log(3+x)+16)/exp(1))+(x^3+x^2-6*x)*log(3+x)-16*x^3-16*x^2+95*x)*exp((log((-log(3+x)+16)/exp(1))+x*log(x^2)-x^2)/x)/((x^3+3*x^2)*log(3+x)-16*x^3-48*x^2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -e^{\left (-x + \frac {\log \left (-e^{\left (-1\right )} \log \left (x + 3\right ) + 16 \, e^{\left (-1\right )}\right )}{x} + \log \left (x^{2}\right )\right )} \]