\[ \int \frac {e^{\frac {-6+5 e^{10} x-5 x \log (25 x)}{-10+5 x}} \left (16-10 e^{10}-5 x+10 \log (25 x)\right )}{20-20 x+5 x^2} \, dx \]
Optimal antiderivative \[ {\mathrm e}^{\frac {x \left ({\mathrm e}^{10}-\ln \left (25 x \right )-\frac {6}{5 x}\right )}{-2+x}} \]
command
integrate((10*log(25*x)-10*exp(5)^2-5*x+16)*exp((-5*x*log(25*x)+5*x*exp(5)^2-6)/(5*x-10))/(5*x^2-20*x+20),x, algorithm="giac")
Giac 1.9.0-11 via sagemath 9.6 output
\[ \text {could not integrate} \]
Giac 1.7.0 via sagemath 9.3 output
\[ e^{\left (\frac {x e^{10}}{x - 2} - \frac {x \log \left (25 \, x\right )}{x - 2} - \frac {6}{5 \, {\left (x - 2\right )}}\right )} \]