43.37 Problem number 5649

\[ \int \frac {e^{\frac {-7 x+e^{36+e^4+12 x^2+x^4+e^2 \left (-12-2 x^2\right )} x}{16+\log (x)}} \left (-105+e^{36+e^4+12 x^2+x^4+e^2 \left (-12-2 x^2\right )} \left (15+384 x^2-64 e^2 x^2+64 x^4\right )+\left (-7+e^{36+e^4+12 x^2+x^4+e^2 \left (-12-2 x^2\right )} \left (1+24 x^2-4 e^2 x^2+4 x^4\right )\right ) \log (x)\right )}{256+32 \log (x)+\log ^2(x)} \, dx \]

Optimal antiderivative \[ {\mathrm e}^{\frac {x \left ({\mathrm e}^{\left ({\mathrm e}^{2}-x^{2}-6\right )^{2}}-7\right )}{16+\ln \left (x \right )}} \]

command

integrate((((-4*x^2*exp(2)+4*x^4+24*x^2+1)*exp(exp(2)^2+(-2*x^2-12)*exp(2)+x^4+12*x^2+36)-7)*log(x)+(-64*x^2*exp(2)+64*x^4+384*x^2+15)*exp(exp(2)^2+(-2*x^2-12)*exp(2)+x^4+12*x^2+36)-105)*exp((x*exp(exp(2)^2+(-2*x^2-12)*exp(2)+x^4+12*x^2+36)-7*x)/(16+log(x)))/(log(x)^2+32*log(x)+256),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ e^{\left (\frac {x e^{\left (x^{4} - 2 \, x^{2} e^{2} + 12 \, x^{2} + e^{4} - 12 \, e^{2} + 36\right )}}{\log \left (x\right ) + 16} - \frac {7 \, x}{\log \left (x\right ) + 16}\right )} \]