43.39 Problem number 5911

\[ \int \frac {e^{3-x \log \left (\frac {1}{3} \left (e^5 x-3 \log (x)\right )\right )} \left (-12+4 e^5 x+\left (4 e^5 x-12 \log (x)\right ) \log \left (\frac {1}{3} \left (e^5 x-3 \log (x)\right )\right )\right )}{-e^5 x+3 \log (x)} \, dx \]

Optimal antiderivative \[ 4 \,{\mathrm e}^{-x \ln \left (-\ln \left (x \right )+\frac {x \,{\mathrm e}^{5}}{3}\right )+3}-16 \]

command

integrate(((-12*log(x)+4*x*exp(5))*log(-log(x)+1/3*x*exp(5))+4*x*exp(5)-12)*exp(-x*log(-log(x)+1/3*x*exp(5))+3)/(3*log(x)-x*exp(5)),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ 4 \, e^{\left (-x \log \left (\frac {1}{3} \, x e^{5} - \log \left (x\right )\right ) + 3\right )} \]