43.48 Problem number 7444

\[ \int e^{-4+e^{16} (1-x)+4 x+x^2-x^3+e^8 \left (-2 x+2 x^2\right )} \left (4-e^{16}+2 x-3 x^2+e^8 (-2+4 x)\right ) \, dx \]

Optimal antiderivative \[ {\mathrm e}^{\left (4-\left (x -{\mathrm e}^{8}\right )^{2}\right ) \left (-1+x \right )} \]

command

integrate((-exp(8)^2+(4*x-2)*exp(8)-3*x^2+2*x+4)*exp((1-x)*exp(8)^2+(2*x^2-2*x)*exp(8)-x^3+x^2+4*x-4),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ e^{\left (-x^{3} + 2 \, x^{2} e^{8} + x^{2} - x e^{16} - 2 \, x e^{8} + 4 \, x + e^{16} - 4\right )} \]