43.55 Problem number 8143

\[ \int \frac {-192 x^6-96 x^7+e^5 \left (-192 x^3-240 x^4-72 x^5-48 x^6-24 x^7\right )+\left (-96 x^6+e^5 \left (-192 x^3-120 x^4-24 x^6\right )\right ) \log (3)-48 e^5 x^3 \log ^2(3)+e^{x/4} \left (80 x^6+48 x^7+4 x^8+e^5 \left (64 x^3+84 x^4+28 x^5+21 x^6+12 x^7+x^8\right )+\left (48 x^6+8 x^7+e^5 \left (64 x^3+44 x^4+2 x^5+12 x^6+2 x^7\right )\right ) \log (3)+\left (4 x^6+e^5 \left (16 x^3+x^4+x^6\right )\right ) \log ^2(3)\right )}{256 x^6+e^{15} \left (4+12 x^2+12 x^4+4 x^6\right )+e^{10} \left (48 x^2+96 x^4+48 x^6\right )+e^5 \left (192 x^4+192 x^6\right )} \, dx \]

Optimal antiderivative \[ \frac {\left ({\mathrm e}^{\frac {x}{4}}-3\right ) \left (\ln \! \left (3\right )+2+x \right )^{2}}{\left (4+{\mathrm e}^{5}+\frac {{\mathrm e}^{5}}{x^{2}}\right )^{2}} \]

command

integrate(((((x^6+x^4+16*x^3)*exp(5)+4*x^6)*log(3)^2+((2*x^7+12*x^6+2*x^5+44*x^4+64*x^3)*exp(5)+8*x^7+48*x^6)*log(3)+(x^8+12*x^7+21*x^6+28*x^5+84*x^4+64*x^3)*exp(5)+4*x^8+48*x^7+80*x^6)*exp(1/4*x)-48*x^3*exp(5)*log(3)^2+((-24*x^6-120*x^4-192*x^3)*exp(5)-96*x^6)*log(3)+(-24*x^7-48*x^6-72*x^5-240*x^4-192*x^3)*exp(5)-96*x^7-192*x^6)/((4*x^6+12*x^4+12*x^2+4)*exp(5)^3+(48*x^6+96*x^4+48*x^2)*exp(5)^2+(192*x^6+192*x^4)*exp(5)+256*x^6),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Timed out} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \text {output too large to display} \]