9.6 Problem number 1966

\[ \int \frac {(d+e x)^4}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx \]

Optimal antiderivative \[ -\frac {2 \left (e x +d \right )^{3}}{3 c d \left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}+\frac {e^{\frac {3}{2}} \arctanh \! \left (\frac {2 c d e x +a \,e^{2}+c \,d^{2}}{2 \sqrt {c}\, \sqrt {d}\, \sqrt {e}\, \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}}\right )}{c^{\frac {5}{2}} d^{\frac {5}{2}}}-\frac {2 e \left (e x +d \right )}{c^{2} d^{2} \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}} \]

command

integrate((e*x+d)^4/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {2 \, {\left ({\left ({\left (\frac {4 \, {\left (c^{5} d^{9} e^{3} - 4 \, a c^{4} d^{7} e^{5} + 6 \, a^{2} c^{3} d^{5} e^{7} - 4 \, a^{3} c^{2} d^{3} e^{9} + a^{4} c d e^{11}\right )} x}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}} + \frac {3 \, {\left (3 \, c^{5} d^{10} e^{2} - 11 \, a c^{4} d^{8} e^{4} + 14 \, a^{2} c^{3} d^{6} e^{6} - 6 \, a^{3} c^{2} d^{4} e^{8} - a^{4} c d^{2} e^{10} + a^{5} e^{12}\right )}}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}}\right )} x + \frac {6 \, {\left (c^{5} d^{11} e - 3 \, a c^{4} d^{9} e^{3} + 2 \, a^{2} c^{3} d^{7} e^{5} + 2 \, a^{3} c^{2} d^{5} e^{7} - 3 \, a^{4} c d^{3} e^{9} + a^{5} d e^{11}\right )}}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}}\right )} x + \frac {c^{5} d^{12} - a c^{4} d^{10} e^{2} - 6 \, a^{2} c^{3} d^{8} e^{4} + 14 \, a^{3} c^{2} d^{6} e^{6} - 11 \, a^{4} c d^{4} e^{8} + 3 \, a^{5} d^{2} e^{10}}{c^{6} d^{10} - 4 \, a c^{5} d^{8} e^{2} + 6 \, a^{2} c^{4} d^{6} e^{4} - 4 \, a^{3} c^{3} d^{4} e^{6} + a^{4} c^{2} d^{2} e^{8}}\right )}}{3 \, {\left (c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} - \frac {\sqrt {c d} e^{\frac {3}{2}} \log \left ({\left | -\sqrt {c d} c d^{2} e^{\frac {1}{2}} - 2 \, {\left (\sqrt {c d} x e^{\frac {1}{2}} - \sqrt {c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x}\right )} c d e - \sqrt {c d} a e^{\frac {5}{2}} \right |}\right )}{c^{3} d^{3}} \]