9.8 Problem number 1968

\[ \int \frac {(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx \]

Optimal antiderivative \[ -\frac {2 \left (e x +d \right )}{3 c d \left (a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}\right )^{\frac {3}{2}}}+\frac {2 e \left (2 c d e x +a \,e^{2}+c \,d^{2}\right )}{3 c d \left (-a \,e^{2}+c \,d^{2}\right )^{2} \sqrt {a d e +\left (a \,e^{2}+c \,d^{2}\right ) x +c d e \,x^{2}}} \]

command

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {2 \, {\left ({\left ({\left (\frac {2 \, {\left (c^{3} d^{5} e^{3} - 2 \, a c^{2} d^{3} e^{5} + a^{2} c d e^{7}\right )} x}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac {3 \, {\left (c^{3} d^{6} e^{2} - a c^{2} d^{4} e^{4} - a^{2} c d^{2} e^{6} + a^{3} e^{8}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac {6 \, {\left (a c^{2} d^{5} e^{3} - 2 \, a^{2} c d^{3} e^{5} + a^{3} d e^{7}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x - \frac {c^{3} d^{8} - 5 \, a c^{2} d^{6} e^{2} + 7 \, a^{2} c d^{4} e^{4} - 3 \, a^{3} d^{2} e^{6}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )}}{3 \, {\left (c d x^{2} e + a d e + {\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac {3}{2}}} \]