3.4 Problem number 890

\[ \int \frac {x}{\left (c x^2\right )^{3/2} (a+b x)} \, dx \]

Optimal antiderivative \[ -\frac {1}{a c \sqrt {c \,x^{2}}}-\frac {b x \ln \! \left (x \right )}{a^{2} c \sqrt {c \,x^{2}}}+\frac {b x \ln \! \left (b x +a \right )}{a^{2} c \sqrt {c \,x^{2}}} \]

command

integrate(x/(c*x^2)^(3/2)/(b*x+a),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {\frac {b \log \left ({\left | -{\left (\sqrt {c} x - \sqrt {c x^{2}}\right )} b - 2 \, a \sqrt {c} \right |}\right )}{a^{2} c} - \frac {b \log \left ({\left | -\sqrt {c} x + \sqrt {c x^{2}} \right |}\right )}{a^{2} c} - \frac {2}{{\left (\sqrt {c} x - \sqrt {c x^{2}}\right )} a \sqrt {c}}}{\sqrt {c}} \]