11.10 Problem number 27

\[ \int \frac {d+e x}{x \left (d^2-e^2 x^2\right )^{7/2}} \, dx \]

Optimal antiderivative \[ \frac {e x +d}{5 d^{2} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {4 e x +5 d}{15 d^{4} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\arctanh \! \left (\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{d}\right )}{d^{6}}+\frac {8 e x +15 d}{15 d^{6} \sqrt {-e^{2} x^{2}+d^{2}}} \]

command

integrate((e*x+d)/x/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {could not integrate} \]

Giac 1.7.0 via sagemath 9.3 output

\[ -\frac {\sqrt {-x^{2} e^{2} + d^{2}} {\left ({\left ({\left ({\left (x {\left (\frac {8 \, x e^{5}}{d^{6}} + \frac {15 \, e^{4}}{d^{5}}\right )} - \frac {20 \, e^{3}}{d^{4}}\right )} x - \frac {35 \, e^{2}}{d^{3}}\right )} x + \frac {15 \, e}{d^{2}}\right )} x + \frac {23}{d}\right )}}{15 \, {\left (x^{2} e^{2} - d^{2}\right )}^{3}} - \frac {\log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right )}{d^{6}} \]