\[ \int \frac {(d+e x)^2}{x \left (d^2-e^2 x^2\right )^{7/2}} \, dx \]
Optimal antiderivative \[ \frac {\frac {2 e x}{5}+\frac {2 d}{5}}{d \left (-e^{2} x^{2}+d^{2}\right )^{\frac {5}{2}}}+\frac {8 e x +5 d}{15 d^{3} \left (-e^{2} x^{2}+d^{2}\right )^{\frac {3}{2}}}-\frac {\arctanh \! \left (\frac {\sqrt {-e^{2} x^{2}+d^{2}}}{d}\right )}{d^{5}}+\frac {16 e x +15 d}{15 d^{5} \sqrt {-e^{2} x^{2}+d^{2}}} \]
command
integrate((e*x+d)^2/x/(-e^2*x^2+d^2)^(7/2),x, algorithm="giac")
Giac 1.9.0-11 via sagemath 9.6 output
\[ \text {could not integrate} \]
Giac 1.7.0 via sagemath 9.3 output
\[ -\frac {\sqrt {-x^{2} e^{2} + d^{2}} {\left ({\left ({\left ({\left (x {\left (\frac {16 \, x e^{5}}{d^{5}} + \frac {15 \, e^{4}}{d^{4}}\right )} - \frac {40 \, e^{3}}{d^{3}}\right )} x - \frac {35 \, e^{2}}{d^{2}}\right )} x + \frac {30 \, e}{d}\right )} x + 26\right )}}{15 \, {\left (x^{2} e^{2} - d^{2}\right )}^{3}} - \frac {\log \left (\frac {{\left | -2 \, d e - 2 \, \sqrt {-x^{2} e^{2} + d^{2}} e \right |} e^{\left (-2\right )}}{2 \, {\left | x \right |}}\right )}{d^{5}} \]