3.6 Problem number 915

\[ \int \frac {1}{x \sqrt {c x^2} (a+b x)^2} \, dx \]

Optimal antiderivative \[ -\frac {1}{a^{2} \sqrt {c \,x^{2}}}-\frac {b x}{a^{2} \left (b x +a \right ) \sqrt {c \,x^{2}}}-\frac {2 b x \ln \! \left (x \right )}{a^{3} \sqrt {c \,x^{2}}}+\frac {2 b x \ln \! \left (b x +a \right )}{a^{3} \sqrt {c \,x^{2}}} \]

command

integrate(1/x/(b*x+a)^2/(c*x^2)^(1/2),x, algorithm="giac")

Giac 1.9.0-11 via sagemath 9.6 output

\[ \text {Exception raised: TypeError} \]

Giac 1.7.0 via sagemath 9.3 output

\[ \frac {b {\left (\frac {2 \, \log \left ({\left | -\frac {a}{b x + a} + 1 \right |}\right )}{a^{3} \mathrm {sgn}\left (-\frac {b}{b x + a} + \frac {a b}{{\left (b x + a\right )}^{2}}\right )} + \frac {1}{{\left (b x + a\right )} a^{2} \mathrm {sgn}\left (-\frac {b}{b x + a} + \frac {a b}{{\left (b x + a\right )}^{2}}\right )} - \frac {1}{a^{3} {\left (\frac {a}{b x + a} - 1\right )} \mathrm {sgn}\left (-\frac {b}{b x + a} + \frac {a b}{{\left (b x + a\right )}^{2}}\right )}\right )}}{\sqrt {c}} \]