\[ \int \frac {\left (a+b \text {csch}\left (c+d \sqrt {x}\right )\right )^2}{\sqrt {x}} \, dx \]
Optimal antiderivative \[ -\frac {4 a b \arctanh \! \left (\cosh \! \left (c +d \sqrt {x}\right )\right )}{d}-\frac {2 b^{2} \coth \! \left (c +d \sqrt {x}\right )}{d}+2 a^{2} \sqrt {x} \]
command
int((a+b*csch(c+d*x^(1/2)))^2/x^(1/2),x)
Maple 2022.1 output
\[\int \frac {\left (a +b \,\mathrm {csch}\left (c +d \sqrt {x}\right )\right )^{2}}{\sqrt {x}}\, dx\]
Maple 2021.1 output
\[ \frac {2 a^{2} \left (c +d \sqrt {x}\right )-8 a b \arctanh \left ({\mathrm e}^{c +d \sqrt {x}}\right )-2 b^{2} \coth \left (c +d \sqrt {x}\right )}{d} \]