\[ \int \frac {(e \cos (c+d x))^{15/2}}{(a+b \sin (c+d x))^4} \, dx \]
Optimal antiderivative \[ \frac {39 a \left (11 a^{4}-17 a^{2} b^{2}+6 b^{4}\right ) e^{\frac {15}{2}} \arctan \! \left (\frac {\sqrt {b}\, \sqrt {e \cos \left (d x +c \right )}}{\left (-a^{2}+b^{2}\right )^{\frac {1}{4}} \sqrt {e}}\right )}{16 b^{\frac {15}{2}} \left (-a^{2}+b^{2}\right )^{\frac {3}{4}} d}+\frac {39 a \left (11 a^{4}-17 a^{2} b^{2}+6 b^{4}\right ) e^{\frac {15}{2}} \arctanh \! \left (\frac {\sqrt {b}\, \sqrt {e \cos \left (d x +c \right )}}{\left (-a^{2}+b^{2}\right )^{\frac {1}{4}} \sqrt {e}}\right )}{16 b^{\frac {15}{2}} \left (-a^{2}+b^{2}\right )^{\frac {3}{4}} d}-\frac {e \left (e \cos \! \left (d x +c \right )\right )^{\frac {13}{2}}}{3 b d \left (a +b \sin \! \left (d x +c \right )\right )^{3}}-\frac {13 e^{3} \left (e \cos \! \left (d x +c \right )\right )^{\frac {9}{2}} \left (11 a +4 b \sin \! \left (d x +c \right )\right )}{84 b^{3} d \left (a +b \sin \! \left (d x +c \right )\right )^{2}}-\frac {39 e^{5} \left (e \cos \! \left (d x +c \right )\right )^{\frac {5}{2}} \left (77 a^{2}-20 b^{2}+22 a b \sin \! \left (d x +c \right )\right )}{280 b^{5} d \left (a +b \sin \! \left (d x +c \right )\right )}+\frac {13 \left (231 a^{4}-203 a^{2} b^{2}+20 b^{4}\right ) e^{8} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticF \! \left (\sin \! \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right )}{56 \cos \! \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{8} d \sqrt {e \cos \! \left (d x +c \right )}}-\frac {39 a^{2} \left (11 a^{4}-17 a^{2} b^{2}+6 b^{4}\right ) e^{8} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticPi \! \left (\sin \! \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 b}{b -\sqrt {-a^{2}+b^{2}}}, \sqrt {2}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right )}{16 \cos \! \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{8} d \left (a^{2}-b \left (b -\sqrt {-a^{2}+b^{2}}\right )\right ) \sqrt {e \cos \! \left (d x +c \right )}}-\frac {39 a^{2} \left (11 a^{4}-17 a^{2} b^{2}+6 b^{4}\right ) e^{8} \sqrt {\frac {\cos \left (d x +c \right )}{2}+\frac {1}{2}}\, \EllipticPi \! \left (\sin \! \left (\frac {d x}{2}+\frac {c}{2}\right ), \frac {2 b}{b +\sqrt {-a^{2}+b^{2}}}, \sqrt {2}\right ) \left (\sqrt {\cos }\left (d x +c \right )\right )}{16 \cos \! \left (\frac {d x}{2}+\frac {c}{2}\right ) b^{8} d \left (a^{2}-b \left (b +\sqrt {-a^{2}+b^{2}}\right )\right ) \sqrt {e \cos \! \left (d x +c \right )}}+\frac {13 e^{7} \left (21 a \left (11 a^{2}-6 b^{2}\right )-b \left (77 a^{2}-20 b^{2}\right ) \sin \! \left (d x +c \right )\right ) \sqrt {e \cos \! \left (d x +c \right )}}{56 b^{7} d} \]
command
int((e*cos(d*x+c))^(15/2)/(a+b*sin(d*x+c))^4,x)
Maple 2022.1 output
\[\int \frac {\left (e \cos \left (d x +c \right )\right )^{\frac {15}{2}}}{\left (a +b \sin \left (d x +c \right )\right )^{4}}\, dx\]
Maple 2021.1 output
\[ \text {output too large to display} \]