11.10 Problem number 35

\[ \int x^2 \sinh ^{-1}(a x)^4 \, dx \]

Optimal antiderivative \[ -\frac {160 x}{27 a^{2}}+\frac {8 x^{3}}{81}-\frac {8 x \arcsinh \! \left (a x \right )^{2}}{3 a^{2}}+\frac {4 x^{3} \arcsinh \! \left (a x \right )^{2}}{9}+\frac {x^{3} \arcsinh \! \left (a x \right )^{4}}{3}+\frac {160 \arcsinh \! \left (a x \right ) \sqrt {a^{2} x^{2}+1}}{27 a^{3}}-\frac {8 x^{2} \arcsinh \! \left (a x \right ) \sqrt {a^{2} x^{2}+1}}{27 a}+\frac {8 \arcsinh \! \left (a x \right )^{3} \sqrt {a^{2} x^{2}+1}}{9 a^{3}}-\frac {4 x^{2} \arcsinh \! \left (a x \right )^{3} \sqrt {a^{2} x^{2}+1}}{9 a} \]

command

int(x^2*arcsinh(a*x)^4,x)

Maple 2022.1 output

\[\int x^{2} \arcsinh \left (a x \right )^{4}\, dx\]

Maple 2021.1 output

\[ \frac {\frac {a^{3} x^{3} \arcsinh \left (a x \right )^{4}}{3}+\frac {8 \arcsinh \left (a x \right )^{3} \sqrt {a^{2} x^{2}+1}}{9}-\frac {4 a^{2} x^{2} \arcsinh \left (a x \right )^{3} \sqrt {a^{2} x^{2}+1}}{9}-\frac {8 a x \arcsinh \left (a x \right )^{2}}{3}+\frac {160 \sqrt {a^{2} x^{2}+1}\, \arcsinh \left (a x \right )}{27}-\frac {160 a x}{27}+\frac {4 a^{3} x^{3} \arcsinh \left (a x \right )^{2}}{9}-\frac {8 \arcsinh \left (a x \right ) \sqrt {a^{2} x^{2}+1}\, a^{2} x^{2}}{27}+\frac {8 a^{3} x^{3}}{81}}{a^{3}} \]