12.7 Problem number 71

\[ \int x^3 \left (\pi +c^2 \pi x^2\right )^{5/2} \left (a+b \sinh ^{-1}(c x)\right ) \, dx \]

Optimal antiderivative \[ \frac {2 b \,\pi ^{\frac {5}{2}} x}{63 c^{3}}-\frac {b \,\pi ^{\frac {5}{2}} x^{3}}{189 c}-\frac {b c \,\pi ^{\frac {5}{2}} x^{5}}{21}-\frac {19 b \,c^{3} \pi ^{\frac {5}{2}} x^{7}}{441}-\frac {b \,c^{5} \pi ^{\frac {5}{2}} x^{9}}{81}-\frac {\left (c^{2} \pi \,x^{2}+\pi \right )^{\frac {7}{2}} \left (a +b \arcsinh \! \left (c x \right )\right )}{7 c^{4} \pi }+\frac {\left (c^{2} \pi \,x^{2}+\pi \right )^{\frac {9}{2}} \left (a +b \arcsinh \! \left (c x \right )\right )}{9 c^{4} \pi ^{2}} \]

command

int(x^3*(Pi*c^2*x^2+Pi)^(5/2)*(a+b*arcsinh(c*x)),x)

Maple 2022.1 output

\[\int x^{3} \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {5}{2}} \left (a +b \arcsinh \left (c x \right )\right )\, dx\]

Maple 2021.1 output

\[ a \left (\frac {x^{2} \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {7}{2}}}{9 \pi \,c^{2}}-\frac {2 \left (\pi \,c^{2} x^{2}+\pi \right )^{\frac {7}{2}}}{63 \pi \,c^{4}}\right )+\frac {b \,\pi ^{\frac {5}{2}} \left (441 \arcsinh \left (c x \right ) c^{10} x^{10}+1638 \arcsinh \left (c x \right ) c^{8} x^{8}-49 c^{9} x^{9} \sqrt {c^{2} x^{2}+1}+2142 \arcsinh \left (c x \right ) c^{6} x^{6}-171 c^{7} x^{7} \sqrt {c^{2} x^{2}+1}+1008 \arcsinh \left (c x \right ) c^{4} x^{4}-189 c^{5} x^{5} \sqrt {c^{2} x^{2}+1}-63 \arcsinh \left (c x \right ) c^{2} x^{2}-21 c^{3} x^{3} \sqrt {c^{2} x^{2}+1}-126 \arcsinh \left (c x \right )+126 c x \sqrt {c^{2} x^{2}+1}\right )}{3969 c^{4} \sqrt {c^{2} x^{2}+1}} \]