[next] [prev] [prev-tail] [tail] [up]
∫x4(d+c2dx2)2(a+bsinh−1(cx))2dx
Optimal antiderivative 4208b2d2x99225c4−2104b2d2x3297675c2+526b2d2x5165375+212b2c2d2x727783+2b2c4d2x9729−8bd2(c2x2+1)32(a+barcsinh(cx))189c5+2bd2(c2x2+1)52(a+barcsinh(cx))315c5+20bd2(c2x2+1)72(a+barcsinh(cx))441c5−2bd2(c2x2+1)92(a+barcsinh(cx))81c5+8d2x5(a+barcsinh(cx))2315+4d2x5(c2x2+1)(a+barcsinh(cx))263+d2x5(c2x2+1)2(a+barcsinh(cx))29−128bd2(a+barcsinh(cx))c2x2+14725c5+64bd2x2(a+barcsinh(cx))c2x2+14725c3−16bd2x4(a+barcsinh(cx))c2x2+11575c
command
int(x^4*(c^2*d*x^2+d)^2*(a+b*arcsinh(c*x))^2,x)
Maple 2022.1 output
∫x4(c2dx2+d)2(a+barcsinh(cx))2dx
Maple 2021.1 output
d2a2(19c9x9+27c7x7+15c5x5)+d2b2(arcsinh(cx)2c3x3(c2x2+1)39−arcsinh(cx)2cx(c2x2+1)321+8arcsinh(cx)2cx315+arcsinh(cx)2cx(c2x2+1)2105+4arcsinh(cx)2cx(c2x2+1)315−2arcsinh(cx)c2x2(c2x2+1)7281+82arcsinh(cx)(c2x2+1)723969+2cx(c2x2+1)4729+1493104cx31255875−836cx(c2x2+1)3250047−33862cx(c2x2+1)210418625−47248cx(c2x2+1)31255875−16arcsinh(cx)c2x2+1315−2arcsinh(cx)(c2x2+1)52525−8arcsinh(cx)(c2x2+1)32945)+2d2ab(arcsinh(cx)c9x99+2arcsinh(cx)c7x77+arcsinh(cx)c5x55−c8x8c2x2+181−106c6x6c2x2+13969−263c4x4c2x2+133075+1052c2x2c2x2+199225−2104c2x2+199225)c5
[next] [prev] [prev-tail] [front] [up]