9.1 Problem number 82

(bsec(c+dx))n(A+Bsec(c+dx)+Csec2(c+dx))sec32(c+dx)dx

Optimal antiderivative 2C(bsec(dx+c))nsin(dx+c)d(12n)sec(dx+c)4(A+C(32n)2An)hypergeom([12,54n2],[94n2],cos2(dx+c))(bsec(dx+c))nsin(dx+c)d(4n212n+5)sec(dx+c)5222cos(2dx+2c)4Bhypergeom([12,34n2],[74n2],cos2(dx+c))(bsec(dx+c))nsin(dx+c)d(32n)sec(dx+c)3222cos(2dx+2c)

command

Integrate[((b*Sec[c + d*x])^n*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]

Mathematica 13.1 output

$Aborted

Mathematica 12.3 output

i2n+12e12i(4c+d(2n+1)x)(ei(c+dx)1+e2i(c+dx))n+12(1+e2i(c+dx))n+12secn2(c+dx)(bsec(c+dx))n(A+Bsec(c+dx)+Csec2(c+dx))(e2ic(e12i(2c+d(2n+3)x)(A(2n+3)ei(c+dx)2F1(n+12,14(2n+5);14(2n+9);e2i(c+dx))+2B(2n+5)2F1(n+12,14(2n+3);14(2n+7);e2i(c+dx)))d(2n+3)(2n+5)+2(A+2C)e12id(2n+1)x2F1(n+12,14(2n+1);14(2n+5);e2i(c+dx))2dn+d)+Ae12id(2n3)x2F1(n+12,14(2n3);14(2n+1);e2i(c+dx))d(2n3)+2Be12i(2c+d(2n1)x)2F1(n+12,14(2n1);14(2n+3);e2i(c+dx))d(2n1))Acos(2c+2dx)+A+2Bcos(c+dx)+2C