[tail] [up]
∫(bsec(c+dx))n(A+Bsec(c+dx)+Csec2(c+dx))sec32(c+dx)dx
Optimal antiderivative −2C(bsec(dx+c))nsin(dx+c)d(1−2n)sec(dx+c)−4(A+C(3−2n)−2An)hypergeom([12,54−n2],[94−n2],cos2(dx+c))(bsec(dx+c))nsin(dx+c)d(4n2−12n+5)sec(dx+c)522−2cos(2dx+2c)−4Bhypergeom([12,34−n2],[74−n2],cos2(dx+c))(bsec(dx+c))nsin(dx+c)d(3−2n)sec(dx+c)322−2cos(2dx+2c)
command
Integrate[((b*Sec[c + d*x])^n*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sec[c + d*x]^(3/2),x]
Mathematica 13.1 output
$Aborted
Mathematica 12.3 output
−i2n+12e−12i(4c+d(2n+1)x)(ei(c+dx)1+e2i(c+dx))n+12(1+e2i(c+dx))n+12sec−n−2(c+dx)(bsec(c+dx))n(A+Bsec(c+dx)+Csec2(c+dx))(e2ic(e12i(2c+d(2n+3)x)(A(2n+3)ei(c+dx)2F1(n+12,14(2n+5);14(2n+9);−e2i(c+dx))+2B(2n+5)2F1(n+12,14(2n+3);14(2n+7);−e2i(c+dx)))d(2n+3)(2n+5)+2(A+2C)e12id(2n+1)x2F1(n+12,14(2n+1);14(2n+5);−e2i(c+dx))2dn+d)+Ae12id(2n−3)x2F1(n+12,14(2n−3);14(2n+1);−e2i(c+dx))d(2n−3)+2Be12i(2c+d(2n−1)x)2F1(n+12,14(2n−1);14(2n+3);−e2i(c+dx))d(2n−1))Acos(2c+2dx)+A+2Bcos(c+dx)+2C
[front] [up]