[prev] [prev-tail] [tail] [up]
∫xm(d+ex2)3(a+bArcTan(cx))dx
Optimal antiderivative −be(e2(m2+8m+15)−3c2de(m2+10m+21)+3c4d2(m2+12m+35))x2+mc5(2+m)(7+m)(m2+8m+15)+be2(e(5+m)−3c2d(7+m))x4+mc3(4+m)(5+m)(7+m)−be3x6+mc(6+m)(7+m)+d3x1+m(a+barctan(cx))1+m+3d2ex3+m(a+barctan(cx))3+m+3de2x5+m(a+barctan(cx))5+m+e3x7+m(a+barctan(cx))7+m+b(e3(m3+9m2+23m+15)−3c2de2(m3+11m2+31m+21)+3c4d2e(m3+13m2+47m+35)−c6d3(m3+15m2+71m+105))x2+mhypergeom([1,1+m2],[2+m2],−c2x2)c5(m2+12m+35)(m3+6m2+11m+6)
command
Integrate[x^m*(d + e*x^2)^3*(a + b*ArcTan[c*x]),x]
Mathematica 13.1 output
Mathematica 12.3 output
xm+1(d3(a+btan−1(cx))m+1+3d2ex2(a+btan−1(cx))m+3+3de2x4(a+btan−1(cx))m+5+e3x6(a+btan−1(cx))m+7−bcd3x2F1(1,m+22;m+42;−c2x2)m2+3m+2−3bcd2ex32F1(1,m+42;m+62;−c2x2)m2+7m+12−3bcde2x52F1(1,m+62;m+82;−c2x2)(m+5)(m+6)−bce3x72F1(1,m2+4;m2+5;−c2x2)(m+7)(m+8))
[prev] [prev-tail] [front] [up]