16.2 Problem number 94

x2(a+bsinh1(c+dx))ndx

Optimal antiderivative 31n(a+barcsinh(dx+c))nΓ(1+n,3(a+barcsinh(dx+c))b)e3ab(abarcsinh(dx+c)b)n8d322nc(a+barcsinh(dx+c))nΓ(1+n,2(a+barcsinh(dx+c))b)e2ab(abarcsinh(dx+c)b)nd3(a+barcsinh(dx+c))nΓ(1+n,abarcsinh(dx+c)b)eab(abarcsinh(dx+c)b)n8d3+c2(a+barcsinh(dx+c))nΓ(1+n,abarcsinh(dx+c)b)eab(abarcsinh(dx+c)b)n2d3+eab(a+barcsinh(dx+c))nΓ(1+n,a+barcsinh(dx+c)b)(a+barcsinh(dx+c)b)n8d3c2eab(a+barcsinh(dx+c))nΓ(1+n,a+barcsinh(dx+c)b)(a+barcsinh(dx+c)b)n2d322nce2ab(a+barcsinh(dx+c))nΓ(1+n,2a+2barcsinh(dx+c)b)(a+barcsinh(dx+c)b)nd331ne3ab(a+barcsinh(dx+c))nΓ(1+n,3a+3barcsinh(dx+c)b)(a+barcsinh(dx+c)b)n8d3

command

Integrate[x^2*(a + b*ArcSinh[c + d*x])^n,x]

Mathematica 13.1 output

x2(a+bsinh1(c+dx))ndx

Mathematica 12.3 output

2n33n1e3ab(a+bsinh1(c+dx))n((a+bsinh1(c+dx))2b2)n((4c21)2n3n+1e2ab(ab+sinh1(c+dx))nΓ(n+1,a+bsinh1(c+dx)b)(4c21)2n3n+1e4ab(a+bsinh1(c+dx)b)nΓ(n+1,ab+sinh1(c+dx))+2n(ab+sinh1(c+dx))nΓ(n+1,3(a+bsinh1(c+dx))b)2c3n+1ea/b(ab+sinh1(c+dx))nΓ(n+1,2(a+bsinh1(c+dx))b)e5ab(a+bsinh1(c+dx)b)n(2c3n+1Γ(n+1,2(a+bsinh1(c+dx))b)+2nea/bΓ(n+1,3(a+bsinh1(c+dx))b)))d3