[next] [prev] [prev-tail] [tail] [up]
∫x2(a+bsinh−1(c+dx))ndx
Optimal antiderivative 3−1−n(a+barcsinh(dx+c))nΓ(1+n,−3(a+barcsinh(dx+c))b)e−3ab(−a−barcsinh(dx+c)b)−n8d3−2−2−nc(a+barcsinh(dx+c))nΓ(1+n,−2(a+barcsinh(dx+c))b)e−2ab(−a−barcsinh(dx+c)b)−nd3−(a+barcsinh(dx+c))nΓ(1+n,−a−barcsinh(dx+c)b)e−ab(−a−barcsinh(dx+c)b)−n8d3+c2(a+barcsinh(dx+c))nΓ(1+n,−a−barcsinh(dx+c)b)e−ab(−a−barcsinh(dx+c)b)−n2d3+eab(a+barcsinh(dx+c))nΓ(1+n,a+barcsinh(dx+c)b)(a+barcsinh(dx+c)b)−n8d3−c2eab(a+barcsinh(dx+c))nΓ(1+n,a+barcsinh(dx+c)b)(a+barcsinh(dx+c)b)−n2d3−2−2−nce2ab(a+barcsinh(dx+c))nΓ(1+n,2a+2barcsinh(dx+c)b)(a+barcsinh(dx+c)b)−nd3−3−1−ne3ab(a+barcsinh(dx+c))nΓ(1+n,3a+3barcsinh(dx+c)b)(a+barcsinh(dx+c)b)−n8d3
command
Integrate[x^2*(a + b*ArcSinh[c + d*x])^n,x]
Mathematica 13.1 output
Mathematica 12.3 output
2−n−33−n−1e−3ab(a+bsinh−1(c+dx))n(−(a+bsinh−1(c+dx))2b2)−n((4c2−1)2n3n+1e2ab(ab+sinh−1(c+dx))nΓ(n+1,−a+bsinh−1(c+dx)b)−(4c2−1)2n3n+1e4ab(−a+bsinh−1(c+dx)b)nΓ(n+1,ab+sinh−1(c+dx))+2n(ab+sinh−1(c+dx))nΓ(n+1,−3(a+bsinh−1(c+dx))b)−2c3n+1ea/b(ab+sinh−1(c+dx))nΓ(n+1,−2(a+bsinh−1(c+dx))b)−e5ab(−a+bsinh−1(c+dx)b)n(2c3n+1Γ(n+1,2(a+bsinh−1(c+dx))b)+2nea/bΓ(n+1,3(a+bsinh−1(c+dx))b)))d3
[next] [prev] [prev-tail] [front] [up]