18.1 Problem number 178

\[ \int \frac {1}{\sqrt {a+b \cosh ^{-1}(c+d x)}} \, dx \]

Optimal antiderivative \[ -\frac {{\mathrm e}^{\frac {a}{b}} \erf \! \left (\frac {\sqrt {a +b \,\mathrm {arccosh}\left (d x +c \right )}}{\sqrt {b}}\right ) \sqrt {\pi }}{2 d \sqrt {b}}+\frac {\erfi \! \left (\frac {\sqrt {a +b \,\mathrm {arccosh}\left (d x +c \right )}}{\sqrt {b}}\right ) \sqrt {\pi }\, {\mathrm e}^{-\frac {a}{b}}}{2 d \sqrt {b}} \]

command

Integrate[1/Sqrt[a + b*ArcCosh[c + d*x]],x]

Mathematica 13.1 output

\[ \int \frac {1}{\sqrt {a+b \cosh ^{-1}(c+d x)}} \, dx \]

Mathematica 12.3 output

\[ \frac {e^{-\frac {a}{b}} \left (e^{\frac {2 a}{b}} \sqrt {\frac {a}{b}+\cosh ^{-1}(c+d x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\cosh ^{-1}(c+d x)\right )+\sqrt {-\frac {a+b \cosh ^{-1}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \cosh ^{-1}(c+d x)}{b}\right )\right )}{2 d \sqrt {a+b \cosh ^{-1}(c+d x)}} \]