Optimal antiderivative
command
Integrate[(((4*E*x^3 - 8*x^4)*Log[3] + (4*E*x - 8*x^2)*Log[3]^2)*Log[x]^3 + (2*E*x^3 - 4*x^4)*Log[-E + 2*x]^2 + Log[x]^2*(-4*x^5 - 4*x^3*Log[3] + (-2*E*x^4 + 4*x^5 + (-6*E*x^2 + 12*x^3)*Log[3])*Log[-E + 2*x]) + Log[x]*((4*x^4 - 2*E*x^4 + 4*x^5 + (-2*E*x^2 + 4*x^3)*Log[3])*Log[-E + 2*x] + (2*E*x^3 - 4*x^4)*Log[-E + 2*x]^2))/((E - 2*x)*Log[3]^3*Log[x]^3 + (-3*E*x + 6*x^2)*Log[3]^2*Log[x]^2*Log[-E + 2*x] + (3*E*x^2 - 6*x^3)*Log[3]*Log[x]*Log[-E + 2*x]^2 + (-(E*x^3) + 2*x^4)*Log[-E + 2*x]^3),x]
Mathematica 13.1 output
Mathematica 12.3 output