Optimal antiderivative
command
Integrate[(-1000*x^2 - 600*x^3 - 620*x^4 - 308*x^5 - 60*x^6 - 4*x^7 + (40*x - 1192*x^2 - 660*x^3 - 1124*x^4 - 608*x^5 - 120*x^6 - 8*x^7 + (20*x - 96*x^2 - 30*x^3 - 2*x^4)*Log[2])*Log[5] + (8*x - 200*x^2 - 60*x^3 - 504*x^4 - 300*x^5 - 60*x^6 - 4*x^7 + (8*x - 100*x^2 - 30*x^3 - 2*x^4)*Log[2] + 2*x*Log[2]^2)*Log[5]^2 + ((-80 - 16*x - 40*x^2 - 8*x^3 + (-40 - 8*x - 20*x^2 - 4*x^3)*Log[2])*Log[5] + (-16 - 40*x^2 - 8*x^3 + (-16 - 20*x^2 - 4*x^3)*Log[2] - 4*Log[2]^2)*Log[5]^2)*Log[x] + (600*x^2 + 240*x^3 + 324*x^4 + 120*x^5 + 12*x^6 + (-8*x + 680*x^2 + 252*x^3 + 624*x^4 + 240*x^5 + 24*x^6 + (-4*x + 40*x^2 + 6*x^3)*Log[2])*Log[5] + (80*x^2 + 12*x^3 + 300*x^4 + 120*x^5 + 12*x^6 + (40*x^2 + 6*x^3)*Log[2])*Log[5]^2)*Log[x]^2 + ((16 + 8*x^2 + (8 + 4*x^2)*Log[2])*Log[5] + (8*x^2 + 4*x^2*Log[2])*Log[5]^2)*Log[x]^3 + (-120*x^2 - 24*x^3 - 60*x^4 - 12*x^5 + (-128*x^2 - 24*x^3 - 120*x^4 - 24*x^5 - 4*x^2*Log[2])*Log[5] + (-8*x^2 - 60*x^4 - 12*x^5 - 4*x^2*Log[2])*Log[5]^2)*Log[x]^4 + (8*x^2 + 4*x^4 + (8*x^2 + 8*x^4)*Log[5] + 4*x^4*Log[5]^2)*Log[x]^6)/(-125*x - 75*x^2 - 15*x^3 - x^4 + (75*x + 30*x^2 + 3*x^3)*Log[x]^2 + (-15*x - 3*x^2)*Log[x]^4 + x*Log[x]^6),x]
Mathematica 13.1 output
Mathematica 12.3 output