32.1 Problem number 120

\[ \int \frac {x \log ^2(x)}{(d+e x)^4} \, dx \]

Optimal antiderivative \[ -\frac {x}{3 d^{2} e \left (e x +d \right )}+\frac {x \ln \! \left (x \right )}{3 d e \left (e x +d \right )^{2}}+\frac {x^{2} \left (e x +3 d \right ) \ln \! \left (x \right )^{2}}{6 d^{2} \left (e x +d \right )^{3}}-\frac {\ln \! \left (x \right ) \ln \! \left (1+\frac {e x}{d}\right )}{3 d^{2} e^{2}}-\frac {\polylog \! \left (2, -\frac {e x}{d}\right )}{3 d^{2} e^{2}} \]

command

integrate(x*ln(x)**2/(e*x+d)**4,x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ \frac {\left (- d - 3 e x\right ) \log {\left (x \right )}^{2}}{6 d^{3} e^{2} + 18 d^{2} e^{3} x + 18 d e^{4} x^{2} + 6 e^{5} x^{3}} + \frac {\left (\begin {cases} \frac {x}{d^{3}} & \text {for}\: e = 0 \\- \frac {1}{2 e \left (d + e x\right )^{2}} & \text {otherwise} \end {cases}\right ) \log {\left (x \right )}}{e} - \frac {\begin {cases} \frac {x}{d^{3}} & \text {for}\: e = 0 \\- \frac {1}{2 d^{2} e + 2 d e^{2} x} - \frac {\log {\left (x \right )}}{2 d^{2} e} + \frac {\log {\left (\frac {d}{e} + x \right )}}{2 d^{2} e} & \text {otherwise} \end {cases}}{e} + \frac {\begin {cases} - \frac {1}{e^{3} x} & \text {for}\: d = 0 \\- \frac {1}{2 d e^{2} + 2 e^{3} x} - \frac {\log {\left (d + e x \right )}}{2 d e^{2}} & \text {otherwise} \end {cases}}{3 d} - \frac {\left (\begin {cases} \frac {1}{e^{3} x} & \text {for}\: d = 0 \\- \frac {1}{2 d \left (\frac {d}{x} + e\right )^{2}} & \text {otherwise} \end {cases}\right ) \log {\left (x \right )}}{3 d} - \frac {2 \left (\begin {cases} - \frac {1}{e^{2} x} & \text {for}\: d = 0 \\- \frac {\log {\left (d^{2} + d e x \right )}}{d e} & \text {otherwise} \end {cases}\right )}{3 d e} + \frac {2 \left (\begin {cases} \frac {1}{e^{2} x} & \text {for}\: d = 0 \\- \frac {1}{\frac {d^{2}}{x} + d e} & \text {otherwise} \end {cases}\right ) \log {\left (x \right )}}{3 d e} + \frac {\begin {cases} - \frac {1}{e x} & \text {for}\: d = 0 \\\frac {\begin {cases} \log {\left (e \right )} \log {\left (x \right )} + \operatorname {Li}_{2}\left (\frac {d e^{i \pi }}{e x}\right ) & \text {for}\: \left |{x}\right | < 1 \\- \log {\left (e \right )} \log {\left (\frac {1}{x} \right )} + \operatorname {Li}_{2}\left (\frac {d e^{i \pi }}{e x}\right ) & \text {for}\: \frac {1}{\left |{x}\right |} < 1 \\- {G_{2, 2}^{2, 0}\left (\begin {matrix} & 1, 1 \\0, 0 & \end {matrix} \middle | {x} \right )} \log {\left (e \right )} + {G_{2, 2}^{0, 2}\left (\begin {matrix} 1, 1 & \\ & 0, 0 \end {matrix} \middle | {x} \right )} \log {\left (e \right )} + \operatorname {Li}_{2}\left (\frac {d e^{i \pi }}{e x}\right ) & \text {otherwise} \end {cases}}{d} & \text {otherwise} \end {cases}}{3 d e^{2}} - \frac {\left (\begin {cases} \frac {1}{e x} & \text {for}\: d = 0 \\\frac {\log {\left (\frac {d}{x} + e \right )}}{d} & \text {otherwise} \end {cases}\right ) \log {\left (x \right )}}{3 d e^{2}} \]