34.1 Problem number 45

\[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{(a g+b g x)^3 (c i+d i x)^2} \, dx \]

Optimal antiderivative \[ \frac {B \,d^{3} \left (b x +a \right )}{\left (-a d +b c \right )^{4} g^{3} i^{2} \left (d x +c \right )}+\frac {3 b^{2} B d \left (d x +c \right )}{\left (-a d +b c \right )^{4} g^{3} i^{2} \left (b x +a \right )}-\frac {b^{3} B \left (d x +c \right )^{2}}{4 \left (-a d +b c \right )^{4} g^{3} i^{2} \left (b x +a \right )^{2}}-\frac {3 b B \,d^{2} \ln \! \left (\frac {b x +a}{d x +c}\right )^{2}}{2 \left (-a d +b c \right )^{4} g^{3} i^{2}}-\frac {d^{3} \left (b x +a \right ) \left (A +B \ln \! \left (\frac {e \left (b x +a \right )}{d x +c}\right )\right )}{\left (-a d +b c \right )^{4} g^{3} i^{2} \left (d x +c \right )}+\frac {3 b^{2} d \left (d x +c \right ) \left (A +B \ln \! \left (\frac {e \left (b x +a \right )}{d x +c}\right )\right )}{\left (-a d +b c \right )^{4} g^{3} i^{2} \left (b x +a \right )}-\frac {b^{3} \left (d x +c \right )^{2} \left (A +B \ln \! \left (\frac {e \left (b x +a \right )}{d x +c}\right )\right )}{2 \left (-a d +b c \right )^{4} g^{3} i^{2} \left (b x +a \right )^{2}}+\frac {3 b \,d^{2} \ln \! \left (\frac {b x +a}{d x +c}\right ) \left (A +B \ln \! \left (\frac {e \left (b x +a \right )}{d x +c}\right )\right )}{\left (-a d +b c \right )^{4} g^{3} i^{2}} \]

command

integrate((A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g)**3/(d*i*x+c*i)**2,x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ \text {output too large to display} \]