44.16 Problem number 1003

\[ \int \frac {e^4 \left (-1+17 x-4 x^2-12 x^3+3 x^4\right )+e^4 \left (4 x-3 x^3\right ) \log (x)+\left (e^4 \left (20-5 x-12 x^2+3 x^3\right )+e^4 \left (5-3 x^2\right ) \log (x)\right ) \log (-4+x-\log (x))+\left (e^4 \left (-4 x+x^2\right )-e^4 x \log (x)+\left (e^4 (-4+x)-e^4 \log (x)\right ) \log (-4+x-\log (x))\right ) \log (x+\log (-4+x-\log (x)))}{4 x-x^2+x \log (x)+(4-x+\log (x)) \log (-4+x-\log (x))} \, dx \]

Optimal antiderivative \[ \left (\left (5-x^{2}-\ln \! \left (\ln \! \left (-\ln \! \left (x \right )+x -4\right )+x \right )\right ) x +9\right ) {\mathrm e}^{4} \]

command

integrate((((-exp(4)*ln(x)+(x-4)*exp(4))*ln(-ln(x)+x-4)-x*exp(4)*ln(x)+(x**2-4*x)*exp(4))*ln(ln(-ln(x)+x-4)+x)+((-3*x**2+5)*exp(4)*ln(x)+(3*x**3-12*x**2-5*x+20)*exp(4))*ln(-ln(x)+x-4)+(-3*x**3+4*x)*exp(4)*ln(x)+(3*x**4-12*x**3-4*x**2+17*x-1)*exp(4))/((ln(x)-x+4)*ln(-ln(x)+x-4)+x*ln(x)-x**2+4*x),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ - x^{3} e^{4} - x e^{4} \log {\left (x + \log {\left (x - \log {\left (x \right )} - 4 \right )} \right )} + 5 x e^{4} \]