\[ \int \frac {\left (\frac {x+4 \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}{\log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}\right )^{\frac {1}{\log \left (x^2\right )}} \left (-x \log \left (x^2\right )+\left (-x+x^2\right ) \log \left (x^2\right ) \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )+\left (\left (2 x-2 x^2\right ) \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )+(8-8 x) \log ^2\left (\frac {(-4+4 x) \log (4)}{5 x}\right )\right ) \log \left (\frac {x+4 \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}{\log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )}\right )\right )}{\left (-x^2+x^3\right ) \log ^2\left (x^2\right ) \log \left (\frac {(-4+4 x) \log (4)}{5 x}\right )+\left (-4 x+4 x^2\right ) \log ^2\left (x^2\right ) \log ^2\left (\frac {(-4+4 x) \log (4)}{5 x}\right )} \, dx \]
Optimal antiderivative \[ {\mathrm e}^{\frac {\ln \left (4+\frac {x}{\ln \left (\frac {8 \left (-1+x \right ) \ln \left (2\right )}{5 x}\right )}\right )}{\ln \left (x^{2}\right )}} \]
command
integrate((((-8*x+8)*ln(2/5*(-4+4*x)*ln(2)/x)**2+(-2*x**2+2*x)*ln(2/5*(-4+4*x)*ln(2)/x))*ln((4*ln(2/5*(-4+4*x)*ln(2)/x)+x)/ln(2/5*(-4+4*x)*ln(2)/x))+(x**2-x)*ln(x**2)*ln(2/5*(-4+4*x)*ln(2)/x)-x*ln(x**2))*exp(ln((4*ln(2/5*(-4+4*x)*ln(2)/x)+x)/ln(2/5*(-4+4*x)*ln(2)/x))/ln(x**2))/((4*x**2-4*x)*ln(x**2)**2*ln(2/5*(-4+4*x)*ln(2)/x)**2+(x**3-x**2)*ln(x**2)**2*ln(2/5*(-4+4*x)*ln(2)/x)),x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ e^{\frac {\log {\left (\frac {x + 4 \log {\left (\frac {\left (\frac {8 x}{5} - \frac {8}{5}\right ) \log {\left (2 \right )}}{x} \right )}}{\log {\left (\frac {\left (\frac {8 x}{5} - \frac {8}{5}\right ) \log {\left (2 \right )}}{x} \right )}} \right )}}{\log {\left (x^{2} \right )}}} \]