44.37 Problem number 2423

\[ \int \frac {\left (16-12 x^2+4 x^3+e^3 \left (-16 x^2-16 x^3+28 x^4-8 x^5\right )+e^3 \left (-16 x-16 x^2+28 x^3-8 x^4\right ) \log (x)\right ) \log \left (\log ^2\left (e^{-e^3 \left (2+x+x^2\right )} (x+\log (x))\right )\right )+\left (-4 x^2+2 x^3+\left (-4 x+2 x^2\right ) \log (x)\right ) \log \left (e^{-e^3 \left (2+x+x^2\right )} (x+\log (x))\right ) \log ^2\left (\log ^2\left (e^{-e^3 \left (2+x+x^2\right )} (x+\log (x))\right )\right )}{\left (x^2+x \log (x)\right ) \log \left (e^{-e^3 \left (2+x+x^2\right )} (x+\log (x))\right )} \, dx \]

Optimal antiderivative \[ \left (-2+x \right )^{2} \ln \! \left (\ln \! \left (\left (x +\ln \! \left (x \right )\right ) {\mathrm e}^{-\left (x^{2}+x +2\right ) {\mathrm e}^{3}}\right )^{2}\right )^{2} \]

command

integrate((((2*x**2-4*x)*ln(x)+2*x**3-4*x**2)*ln((x+ln(x))/exp((x**2+x+2)*exp(3)))*ln(ln((x+ln(x))/exp((x**2+x+2)*exp(3)))**2)**2+((-8*x**4+28*x**3-16*x**2-16*x)*exp(3)*ln(x)+(-8*x**5+28*x**4-16*x**3-16*x**2)*exp(3)+4*x**3-12*x**2+16)*ln(ln((x+ln(x))/exp((x**2+x+2)*exp(3)))**2))/(x*ln(x)+x**2)/ln((x+ln(x))/exp((x**2+x+2)*exp(3))),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ \left (x^{2} - 4 x + 4\right ) \log {\left (\log {\left (\left (x + \log {\left (x \right )}\right ) e^{- \left (x^{2} + x + 2\right ) e^{3}} \right )}^{2} \right )}^{2} \]