44.44 Problem number 2897

\[ \int \frac {e^{-\frac {e^5+5 x}{x}} \left (4 e^{5+4 e^{-\frac {e^5+5 x}{x}}}+e^{\frac {e^5+5 x}{x}} \left (2 x^2-2 x^3-6 x^4+4 x^5\right )+e^{2 e^{-\frac {e^5+5 x}{x}}} \left (e^5 \left (4+4 x-4 x^2\right )+e^{\frac {e^5+5 x}{x}} \left (2 x^2-4 x^3\right )\right )\right )}{x^2} \, dx \]

Optimal antiderivative \[ \left (1-x^{2}+{\mathrm e}^{2 \,{\mathrm e}^{-5-\frac {{\mathrm e}^{5}}{x}}}+x \right )^{2}-2+{\mathrm e}^{4} \]

command

integrate((4*exp(5)*exp(2/exp((exp(5)+5*x)/x))**2+((-4*x**3+2*x**2)*exp((exp(5)+5*x)/x)+(-4*x**2+4*x+4)*exp(5))*exp(2/exp((exp(5)+5*x)/x))+(4*x**5-6*x**4-2*x**3+2*x**2)*exp((exp(5)+5*x)/x))/x**2/exp((exp(5)+5*x)/x),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: SystemError} \]

Sympy 1.8 under Python 3.8.8 output

\[ x^{4} - 2 x^{3} - x^{2} + 2 x + \left (- 2 x^{2} + 2 x + 2\right ) e^{2 e^{- \frac {5 x + e^{5}}{x}}} + e^{4 e^{- \frac {5 x + e^{5}}{x}}} \]