44.50 Problem number 3383

\[ \int \frac {\left (4-4 e^4+e^8\right ) \log ^2(x)+\left (-4+2 e^4\right ) \log ^2(x) \log \left (4 x^2\right )+\log ^2(x) \log ^2\left (4 x^2\right )+e^{\frac {4}{-2+e^4+\log \left (4 x^2\right )}} \left (4-4 e^4+e^8+\left (4+4 e^4-e^8\right ) \log (x)+\left (-4+2 e^4+\left (4-2 e^4\right ) \log (x)\right ) \log \left (4 x^2\right )+(1-\log (x)) \log ^2\left (4 x^2\right )\right )}{\left (4-4 e^4+e^8\right ) \log ^2(x)+\left (-4+2 e^4\right ) \log ^2(x) \log \left (4 x^2\right )+\log ^2(x) \log ^2\left (4 x^2\right )} \, dx \]

Optimal antiderivative \[ \left (\frac {1-x}{x}-\frac {{\mathrm e}^{\frac {4}{\ln \left (4 x^{2}\right )+{\mathrm e}^{4}-2}}}{\ln \! \left (x \right )}+2\right ) x \]

command

integrate((((1-ln(x))*ln(4*x**2)**2+((-2*exp(4)+4)*ln(x)+2*exp(4)-4)*ln(4*x**2)+(-exp(4)**2+4*exp(4)+4)*ln(x)+exp(4)**2-4*exp(4)+4)*exp(4/(ln(4*x**2)+exp(4)-2))+ln(x)**2*ln(4*x**2)**2+(2*exp(4)-4)*ln(x)**2*ln(4*x**2)+(exp(4)**2-4*exp(4)+4)*ln(x)**2)/(ln(x)**2*ln(4*x**2)**2+(2*exp(4)-4)*ln(x)**2*ln(4*x**2)+(exp(4)**2-4*exp(4)+4)*ln(x)**2),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ - \frac {x e^{\frac {4}{2 \log {\left (x \right )} - 2 + \log {\left (4 \right )} + e^{4}}}}{\log {\left (x \right )}} + x \]