\[ \int \frac {e^{\frac {4 x^2+x^2 \log (169)}{20 \log (50-x)}} \left (-4 x^2-x^2 \log (169)+\left (-400 x+8 x^2+\left (-100 x+2 x^2\right ) \log (169)\right ) \log (50-x)\right )}{(-1000+20 x) \log ^2(50-x)} \, dx \]
Optimal antiderivative \[ {\mathrm e}^{\frac {x^{2} \left (\frac {4}{5}+\frac {2 \ln \left (13\right )}{5}\right )}{4 \ln \left (-x +50\right )}} \]
command
integrate(((2*(2*x**2-100*x)*ln(13)+8*x**2-400*x)*ln(-x+50)-2*x**2*ln(13)-4*x**2)*exp(1/20*(2*x**2*ln(13)+4*x**2)/ln(-x+50))/(20*x-1000)/ln(-x+50)**2,x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ e^{\frac {\frac {x^{2}}{5} + \frac {x^{2} \log {\left (13 \right )}}{10}}{\log {\left (50 - x \right )}}} \]