\[ \int \frac {e^{\frac {-15+3 x}{x+\log (x)}} \left (15 x^3+12 x^4+3 x^5+e^x \left (-15-12 x-x^3\right )+\left (-15 x^2-12 x^3-2 x^4\right ) \log (15)+\left (9 x^4+e^x \left (-3 x-2 x^2\right )-7 x^3 \log (15)\right ) \log (x)+\left (-e^x x+3 x^3-2 x^2 \log (15)\right ) \log ^2(x)\right )}{2 x^3+4 x^2 \log (x)+2 x \log ^2(x)} \, dx \]
Optimal antiderivative \[ \frac {\left (x^{2} \left (x -\ln \! \left (15\right )\right )-{\mathrm e}^{x}\right ) {\mathrm e}^{\frac {-5+x}{\frac {x}{3}+\frac {\ln \left (x \right )}{3}}}}{2} \]
command
integrate(((-exp(x)*x-2*x**2*ln(15)+3*x**3)*ln(x)**2+((-2*x**2-3*x)*exp(x)-7*x**3*ln(15)+9*x**4)*ln(x)+(-x**3-12*x-15)*exp(x)+(-2*x**4-12*x**3-15*x**2)*ln(15)+3*x**5+12*x**4+15*x**3)*exp((3*x-15)/(x+ln(x)))/(2*x*ln(x)**2+4*x**2*ln(x)+2*x**3),x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ \frac {\left (x^{3} - x^{2} \log {\left (15 \right )} - e^{x}\right ) e^{\frac {3 x - 15}{x + \log {\left (x \right )}}}}{2} \]