44.64 Problem number 4629

\[ \int \frac {81 x^2+18 x^4+x^6+\left (162 x+18 x^3\right ) \log (2)+81 \log ^2(2)+\left (-81 x^2-18 x^3-18 x^4-2 x^5-x^6+\left (-162 x-18 x^2-18 x^3\right ) \log (2)-81 \log ^2(2)\right ) \log (x)+\left (18 x^3+x^4+2 x^5+18 x^2 \log (2)\right ) \log ^2(x)-x^4 \log ^3(x)+e^{-\frac {3}{-9 x-x^3-9 \log (2)+x^2 \log (x)}} \left (27 x+78 x^2+9 x^3+18 x^4+x^6+\left (162 x+18 x^3\right ) \log (2)+81 \log ^2(2)+\left (-6 x^2-18 x^3-2 x^5-18 x^2 \log (2)\right ) \log (x)+x^4 \log ^2(x)\right )}{81 x^4+18 x^6+x^8+\left (162 x^3+18 x^5\right ) \log (2)+81 x^2 \log ^2(2)+\left (-18 x^5-2 x^7-18 x^4 \log (2)\right ) \log (x)+x^6 \log ^2(x)} \, dx \]

Optimal antiderivative \[ \frac {\ln \! \left (x \right )-{\mathrm e}^{\frac {1}{3 x +\frac {x^{2} \left (x -\ln \left (x \right )\right )}{3}+3 \ln \left (2\right )}}}{x} \]

command

integrate(((x**4*ln(x)**2+(-18*x**2*ln(2)-2*x**5-18*x**3-6*x**2)*ln(x)+81*ln(2)**2+(18*x**3+162*x)*ln(2)+x**6+18*x**4+9*x**3+78*x**2+27*x)*exp(-3/(x**2*ln(x)-9*ln(2)-x**3-9*x))-x**4*ln(x)**3+(18*x**2*ln(2)+2*x**5+x**4+18*x**3)*ln(x)**2+(-81*ln(2)**2+(-18*x**3-18*x**2-162*x)*ln(2)-x**6-2*x**5-18*x**4-18*x**3-81*x**2)*ln(x)+81*ln(2)**2+(18*x**3+162*x)*ln(2)+x**6+18*x**4+81*x**2)/(x**6*ln(x)**2+(-18*x**4*ln(2)-2*x**7-18*x**5)*ln(x)+81*x**2*ln(2)**2+(18*x**5+162*x**3)*ln(2)+x**8+18*x**6+81*x**4),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ \frac {\log {\left (x \right )}}{x} - \frac {e^{- \frac {3}{- x^{3} + x^{2} \log {\left (x \right )} - 9 x - 9 \log {\left (2 \right )}}}}{x} \]