44.89 Problem number 6772

\[ \int \frac {(-3+x) \log (3-x)+\frac {e^{e^{e^5}+\frac {e^{e^{e^5}} \left (e^3+x\right )}{\log (3-x)}} \left (-e^3 x-x^2+\left (-3 x+x^2\right ) \log (3-x)\right )}{\log (3-x)}}{\left (-3 x+x^2\right ) \log (3-x)} \, dx \]

Optimal antiderivative \[ 2+{\mathrm e}^{\left ({\mathrm e}^{3}+x \right ) {\mathrm e}^{-\ln \left (\ln \left (3-x \right )\right )+{\mathrm e}^{{\mathrm e}^{5}}}}+\ln \! \left (x \right ) \]

command

integrate((((x**2-3*x)*ln(3-x)-x*exp(3)-x**2)*exp(-ln(ln(3-x))+exp(exp(5)))*exp((exp(3)+x)*exp(-ln(ln(3-x))+exp(exp(5))))+(-3+x)*ln(3-x))/(x**2-3*x)/ln(3-x),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ e^{\frac {\left (x + e^{3}\right ) e^{e^{e^{5}}}}{\log {\left (3 - x \right )}}} + \log {\left (x \right )} \]