44.97 Problem number 7422

\[ \int \frac {e^{\frac {12}{(-15+20 x) \log \left (x \log ^2(2)\right )}} \left (72-96 x-96 x \log \left (x \log ^2(2)\right )\right )}{\left (45 x-120 x^2+80 x^3\right ) \log ^2\left (x \log ^2(2)\right )} \, dx \]

Optimal antiderivative \[ 2 \,{\mathrm e}^{\frac {3}{5 \ln \left (x \ln \left (2\right )^{2}\right ) \left (x -\frac {3}{4}\right )}}-5 \]

command

integrate((-96*x*ln(x*ln(2)**2)-96*x+72)*exp(12/(20*x-15)/ln(x*ln(2)**2))/(80*x**3-120*x**2+45*x)/ln(x*ln(2)**2)**2,x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ 2 e^{\frac {12}{\left (20 x - 15\right ) \log {\left (x \log {\left (2 \right )}^{2} \right )}}} \]