44.99 Problem number 7742

\[ \int \frac {e^{\frac {x-x^3 \log (x)}{\log ^2(x)}} \left (2+\left (-1-x^2\right ) \log (x)+3 x^2 \log ^2(x)\right )}{\log ^3(x)} \, dx \]

Optimal antiderivative \[ {\mathrm e}^{4-{\mathrm e}^{4}}+9-{\mathrm e}^{\frac {\frac {x}{\ln \left (x \right )}-x^{3}}{\ln \left (x \right )}} \]

command

integrate((3*x**2*ln(x)**2+(-x**2-1)*ln(x)+2)*exp((-x**3*ln(x)+x)/ln(x)**2)/ln(x)**3,x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Exception raised: TypeError} \]

Sympy 1.8 under Python 3.8.8 output

\[ - e^{\frac {- x^{3} \log {\left (x \right )} + x}{\log {\left (x \right )}^{2}}} \]