\[ \int \frac {e^{e^{\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}}+\frac {9 x}{6+e^3+\log \left (\frac {5}{3}\right )+3 \log (x)}} \left (27+9 e^3+9 \log \left (\frac {5}{3}\right )+27 \log (x)\right )}{36+12 e^3+e^6-\left (-12-2 e^3\right ) \log \left (\frac {5}{3}\right )+\log ^2\left (\frac {5}{3}\right )+\left (36+6 e^3+6 \log \left (\frac {5}{3}\right )\right ) \log (x)+9 \log ^2(x)} \, dx \]
Optimal antiderivative \[ {\mathrm e}^{{\mathrm e}^{\frac {3 x}{\ln \left (x \right )+2-\frac {\ln \left (\frac {3}{5}\right )}{3}+\frac {{\mathrm e}^{3}}{3}}}} \]
command
integrate((27*ln(x)-9*ln(3/5)+9*exp(3)+27)*exp(9*x/(3*ln(x)-ln(3/5)+exp(3)+6))*exp(exp(9*x/(3*ln(x)-ln(3/5)+exp(3)+6)))/(9*ln(x)**2+(-6*ln(3/5)+6*exp(3)+36)*ln(x)+ln(3/5)**2+(-2*exp(3)-12)*ln(3/5)+exp(3)**2+12*exp(3)+36),x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ e^{e^{\frac {9 x}{3 \log {\left (x \right )} - \log {\left (\frac {3}{5} \right )} + 6 + e^{3}}}} \]