\[ \int \frac {e^{\frac {x}{2+\log (-18-2 x+\log (4)+3 \log (25))}} (-36-2 x+2 \log (4)+6 \log (25)+(-18-2 x+\log (4)+3 \log (25)) \log (-18-2 x+\log (4)+3 \log (25)))}{-72-8 x+4 \log (4)+12 \log (25)+(-72-8 x+4 \log (4)+12 \log (25)) \log (-18-2 x+\log (4)+3 \log (25))+(-18-2 x+\log (4)+3 \log (25)) \log ^2(-18-2 x+\log (4)+3 \log (25))} \, dx \]
Optimal antiderivative \[ {\mathrm e}^{\frac {x}{\ln \left (6 \ln \left (5\right )+2 \ln \left (2\right )-2 x -18\right )+2}} \]
command
integrate(((6*ln(5)+2*ln(2)-2*x-18)*ln(6*ln(5)+2*ln(2)-2*x-18)+12*ln(5)+4*ln(2)-2*x-36)*exp(x/(ln(6*ln(5)+2*ln(2)-2*x-18)+2))/((6*ln(5)+2*ln(2)-2*x-18)*ln(6*ln(5)+2*ln(2)-2*x-18)**2+(24*ln(5)+8*ln(2)-8*x-72)*ln(6*ln(5)+2*ln(2)-2*x-18)+24*ln(5)+8*ln(2)-8*x-72),x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ e^{\frac {x}{\log {\left (- 2 x - 18 + 2 \log {\left (2 \right )} + 6 \log {\left (5 \right )} \right )} + 2}} \]