\[ \int \frac {30+30 x+e^4 \left (10+25 x+15 x^2\right )+\left (3 x+e^4 \left (-15 x-15 x^2\right )\right ) \log (x)+e^4 (15+15 x) \log ^2(x)+(-3-3 x) \log (1+x)}{e^4 \left (15 x+15 x^2\right ) \log ^2(x)} \, dx \]
Optimal antiderivative \[ \ln \! \left (x \right )+\frac {-\frac {2}{3}+\left (\frac {\ln \left (1+x \right )}{5}-2\right ) {\mathrm e}^{-4}-x}{\ln \! \left (x \right )} \]
command
integrate(((-3*x-3)*ln(1+x)+(15*x+15)*exp(4)*ln(x)**2+((-15*x**2-15*x)*exp(4)+3*x)*ln(x)+(15*x**2+25*x+10)*exp(4)+30*x+30)/(15*x**2+15*x)/exp(4)/ln(x)**2,x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ \frac {- 3 x e^{4} - 2 e^{4} - 6}{3 e^{4} \log {\left (x \right )}} + \log {\left (x \right )} + \frac {\log {\left (x + 1 \right )}}{5 e^{4} \log {\left (x \right )}} \]