\[ \int \frac {\left (e^{10}-e^5 x\right ) \log ^2\left (e^{10}-2 e^5 x+x^2\right )+e^{\frac {4 x^3}{e^5 \log \left (e^{10}-2 e^5 x+x^2\right )}} \left (8 x^3+\left (12 e^5 x^2-12 x^3\right ) \log \left (e^{10}-2 e^5 x+x^2\right )\right )}{\left (e^{10}-e^5 x\right ) \log ^2\left (e^{10}-2 e^5 x+x^2\right )} \, dx \]
Optimal antiderivative \[ 1+{\mathrm e}^{\frac {4 x^{3} {\mathrm e}^{-5}}{\ln \left (\left ({\mathrm e}^{5}-x \right )^{2}\right )}}+x \]
command
integrate((((12*x**2*exp(5)-12*x**3)*ln(exp(5)**2-2*x*exp(5)+x**2)+8*x**3)*exp(4*x**3/exp(5)/ln(exp(5)**2-2*x*exp(5)+x**2))+(exp(5)**2-x*exp(5))*ln(exp(5)**2-2*x*exp(5)+x**2)**2)/(exp(5)**2-x*exp(5))/ln(exp(5)**2-2*x*exp(5)+x**2)**2,x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ x + e^{\frac {4 x^{3}}{e^{5} \log {\left (x^{2} - 2 x e^{5} + e^{10} \right )}}} \]