\[ \int \frac {e^{9 e^{\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}}+\frac {2 \left (-4 x-x^2\right )}{6-3 x+3 \log (x)}} \left (-24-18 x+6 x^2+(-24-12 x) \log (x)\right )}{4-4 x+x^2+(4-2 x) \log (x)+\log ^2(x)} \, dx \]
Optimal antiderivative \[ {\mathrm e}^{9 \,{\mathrm e}^{\frac {2 \left (4+x \right ) x}{3 x -3 \ln \left (x \right )-6}}} \]
command
integrate(((-12*x-24)*ln(x)+6*x**2-18*x-24)*exp((-x**2-4*x)/(3*ln(x)-3*x+6))**2*exp(9*exp((-x**2-4*x)/(3*ln(x)-3*x+6))**2)/(ln(x)**2+(4-2*x)*ln(x)+x**2-4*x+4),x)
Sympy 1.10.1 under Python 3.10.4 output
\[ \text {Exception raised: TypeError} \]
Sympy 1.8 under Python 3.8.8 output
\[ e^{9 e^{\frac {2 \left (- x^{2} - 4 x\right )}{- 3 x + 3 \log {\left (x \right )} + 6}}} \]