7.2 Problem number 11

\[ \int \frac {A+B x+C x^2}{\sqrt {1-d x} \sqrt {1+d x}} \, dx \]

Optimal antiderivative \[ \frac {\left (2 A \,d^{2}+C \right ) \arcsin \! \left (d x \right )}{2 d^{3}}-\frac {B \sqrt {-d^{2} x^{2}+1}}{d^{2}}-\frac {C x \sqrt {-d^{2} x^{2}+1}}{2 d^{2}} \]

command

integrate((C*x**2+B*x+A)/(-d*x+1)**(1/2)/(d*x+1)**(1/2),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ - \frac {i A {G_{6, 6}^{6, 2}\left (\begin {matrix} \frac {1}{4}, \frac {3}{4} & \frac {1}{2}, \frac {1}{2}, 1, 1 \\0, \frac {1}{4}, \frac {1}{2}, \frac {3}{4}, 1, 0 & \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d} + \frac {A {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 1 & \\- \frac {1}{4}, \frac {1}{4} & - \frac {1}{2}, 0, 0, 0 \end {matrix} \middle | {\frac {e^{- 2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d} - \frac {i B {G_{6, 6}^{6, 2}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{4} & 0, 0, \frac {1}{2}, 1 \\- \frac {1}{2}, - \frac {1}{4}, 0, \frac {1}{4}, \frac {1}{2}, 0 & \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d^{2}} - \frac {B {G_{6, 6}^{2, 6}\left (\begin {matrix} -1, - \frac {3}{4}, - \frac {1}{2}, - \frac {1}{4}, 0, 1 & \\- \frac {3}{4}, - \frac {1}{4} & -1, - \frac {1}{2}, - \frac {1}{2}, 0 \end {matrix} \middle | {\frac {e^{- 2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d^{2}} - \frac {i C {G_{6, 6}^{6, 2}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{4} & - \frac {1}{2}, - \frac {1}{2}, 0, 1 \\-1, - \frac {3}{4}, - \frac {1}{2}, - \frac {1}{4}, 0, 0 & \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d^{3}} + \frac {C {G_{6, 6}^{2, 6}\left (\begin {matrix} - \frac {3}{2}, - \frac {5}{4}, -1, - \frac {3}{4}, - \frac {1}{2}, 1 & \\- \frac {5}{4}, - \frac {3}{4} & - \frac {3}{2}, -1, -1, 0 \end {matrix} \middle | {\frac {e^{- 2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}} d^{3}} \]