7.10 Problem number 39

\[ \int \frac {a+b x+c x^2}{x^4 \sqrt {-1+d x} \sqrt {1+d x}} \, dx \]

Optimal antiderivative \[ \frac {b \,d^{2} \arctan \! \left (\sqrt {d x -1}\, \sqrt {d x +1}\right )}{2}+\frac {a \sqrt {d x -1}\, \sqrt {d x +1}}{3 x^{3}}+\frac {b \sqrt {d x -1}\, \sqrt {d x +1}}{2 x^{2}}+\frac {\left (2 a \,d^{2}+3 c \right ) \sqrt {d x -1}\, \sqrt {d x +1}}{3 x} \]

command

integrate((c*x**2+b*x+a)/x**4/(d*x-1)**(1/2)/(d*x+1)**(1/2),x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ - \frac {a d^{3} {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {9}{4}, \frac {11}{4}, 1 & \frac {5}{2}, \frac {5}{2}, 3 \\2, \frac {9}{4}, \frac {5}{2}, \frac {11}{4}, 3 & 0 \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} - \frac {i a d^{3} {G_{6, 6}^{2, 6}\left (\begin {matrix} \frac {3}{2}, \frac {7}{4}, 2, \frac {9}{4}, \frac {5}{2}, 1 & \\\frac {7}{4}, \frac {9}{4} & \frac {3}{2}, 2, 2, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} - \frac {b d^{2} {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {7}{4}, \frac {9}{4}, 1 & 2, 2, \frac {5}{2} \\\frac {3}{2}, \frac {7}{4}, 2, \frac {9}{4}, \frac {5}{2} & 0 \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} + \frac {i b d^{2} {G_{6, 6}^{2, 6}\left (\begin {matrix} 1, \frac {5}{4}, \frac {3}{2}, \frac {7}{4}, 2, 1 & \\\frac {5}{4}, \frac {7}{4} & 1, \frac {3}{2}, \frac {3}{2}, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} - \frac {c d {G_{6, 6}^{5, 3}\left (\begin {matrix} \frac {5}{4}, \frac {7}{4}, 1 & \frac {3}{2}, \frac {3}{2}, 2 \\1, \frac {5}{4}, \frac {3}{2}, \frac {7}{4}, 2 & 0 \end {matrix} \middle | {\frac {1}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} - \frac {i c d {G_{6, 6}^{2, 6}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4}, 1, \frac {5}{4}, \frac {3}{2}, 1 & \\\frac {3}{4}, \frac {5}{4} & \frac {1}{2}, 1, 1, 0 \end {matrix} \middle | {\frac {e^{2 i \pi }}{d^{2} x^{2}}} \right )}}{4 \pi ^{\frac {3}{2}}} \]