15.1 Problem number 46

\[ \int \frac {\left (a+b x^3\right )^5 \left (A+B x^3\right )}{x^{14}} \, dx \]

Optimal antiderivative \[ -\frac {a^{5} A}{13 x^{13}}-\frac {a^{4} \left (5 A b +a B \right )}{10 x^{10}}-\frac {5 a^{3} b \left (2 A b +a B \right )}{7 x^{7}}-\frac {5 a^{2} b^{2} \left (A b +a B \right )}{2 x^{4}}-\frac {5 a \,b^{3} \left (A b +2 a B \right )}{x}+\frac {b^{4} \left (A b +5 a B \right ) x^{2}}{2}+\frac {b^{5} B \,x^{5}}{5} \]

command

integrate((b*x**3+a)**5*(B*x**3+A)/x**14,x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ \frac {B b^{5} x^{5}}{5} + x^{2} \left (\frac {A b^{5}}{2} + \frac {5 B a b^{4}}{2}\right ) + \frac {- 70 A a^{5} + x^{12} \left (- 4550 A a b^{4} - 9100 B a^{2} b^{3}\right ) + x^{9} \left (- 2275 A a^{2} b^{3} - 2275 B a^{3} b^{2}\right ) + x^{6} \left (- 1300 A a^{3} b^{2} - 650 B a^{4} b\right ) + x^{3} \left (- 455 A a^{4} b - 91 B a^{5}\right )}{910 x^{13}} \]