15.4 Problem number 49

\[ \int \frac {\left (a+b x^3\right )^5 \left (A+B x^3\right )}{x^{17}} \, dx \]

Optimal antiderivative \[ -\frac {a^{5} A}{16 x^{16}}-\frac {a^{4} \left (5 A b +a B \right )}{13 x^{13}}-\frac {a^{3} b \left (2 A b +a B \right )}{2 x^{10}}-\frac {10 a^{2} b^{2} \left (A b +a B \right )}{7 x^{7}}-\frac {5 a \,b^{3} \left (A b +2 a B \right )}{4 x^{4}}-\frac {b^{4} \left (A b +5 a B \right )}{x}+\frac {b^{5} B \,x^{2}}{2} \]

command

integrate((b*x**3+a)**5*(B*x**3+A)/x**17,x)

Sympy 1.10.1 under Python 3.10.4 output

\[ \text {Timed out} \]

Sympy 1.8 under Python 3.8.8 output

\[ \frac {B b^{5} x^{2}}{2} + \frac {- 91 A a^{5} + x^{15} \left (- 1456 A b^{5} - 7280 B a b^{4}\right ) + x^{12} \left (- 1820 A a b^{4} - 3640 B a^{2} b^{3}\right ) + x^{9} \left (- 2080 A a^{2} b^{3} - 2080 B a^{3} b^{2}\right ) + x^{6} \left (- 1456 A a^{3} b^{2} - 728 B a^{4} b\right ) + x^{3} \left (- 560 A a^{4} b - 112 B a^{5}\right )}{1456 x^{16}} \]