22.48 Problem number 660

\[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^{3/2}} \, dx \]

Optimal antiderivative \[ -\frac {2 \sqrt {c \,x^{2}+a}}{e \sqrt {e x +d}}-\frac {4 \EllipticE \left (\frac {\sqrt {1-\frac {x \sqrt {c}}{\sqrt {-a}}}\, \sqrt {2}}{2}, \sqrt {-\frac {2 a e}{-a e +d \sqrt {-a}\, \sqrt {c}}}\right ) \sqrt {-a}\, \sqrt {c}\, \sqrt {e x +d}\, \sqrt {1+\frac {c \,x^{2}}{a}}}{e^{2} \sqrt {c \,x^{2}+a}\, \sqrt {\frac {\left (e x +d \right ) \sqrt {c}}{e \sqrt {-a}+d \sqrt {c}}}}+\frac {4 d \EllipticF \left (\frac {\sqrt {1-\frac {x \sqrt {c}}{\sqrt {-a}}}\, \sqrt {2}}{2}, \sqrt {-\frac {2 a e}{-a e +d \sqrt {-a}\, \sqrt {c}}}\right ) \sqrt {-a}\, \sqrt {c}\, \sqrt {1+\frac {c \,x^{2}}{a}}\, \sqrt {\frac {\left (e x +d \right ) \sqrt {c}}{e \sqrt {-a}+d \sqrt {c}}}}{e^{2} \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}} \]

command

integrate((c*x^2+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ -\frac {2 \, {\left (2 \, {\left (d x e + d^{2}\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right ) + 6 \, {\left (x e^{2} + d e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )} e^{\left (-2\right )}}{3 \, c}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )} e^{\left (-3\right )}}{27 \, c}, \frac {1}{3} \, {\left (3 \, x e + d\right )} e^{\left (-1\right )}\right )\right ) + 3 \, \sqrt {c x^{2} + a} \sqrt {x e + d} e^{2}\right )}}{3 \, {\left (x e^{4} + d e^{3}\right )}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {\sqrt {c x^{2} + a} \sqrt {e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \]