22.89 Problem number 1329

\[ \int \frac {\sqrt {a+b x+c x^2}}{\sqrt {b d+2 c d x}} \, dx \]

Optimal antiderivative \[ \frac {\sqrt {2 c d x +b d}\, \sqrt {c \,x^{2}+b x +a}}{3 c d}-\frac {\left (-4 a c +b^{2}\right )^{\frac {5}{4}} \EllipticF \left (\frac {\sqrt {2 c d x +b d}}{\left (-4 a c +b^{2}\right )^{\frac {1}{4}} \sqrt {d}}, i\right ) \sqrt {-\frac {c \left (c \,x^{2}+b x +a \right )}{-4 a c +b^{2}}}}{3 c^{2} \sqrt {d}\, \sqrt {c \,x^{2}+b x +a}} \]

command

integrate((c*x^2+b*x+a)^(1/2)/(2*c*d*x+b*d)^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {2 \, \sqrt {2 \, c d x + b d} \sqrt {c x^{2} + b x + a} c^{2} - \sqrt {2} \sqrt {c^{2} d} {\left (b^{2} - 4 \, a c\right )} {\rm weierstrassPInverse}\left (\frac {b^{2} - 4 \, a c}{c^{2}}, 0, \frac {2 \, c x + b}{2 \, c}\right )}{6 \, c^{3} d} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {\sqrt {c x^{2} + b x + a}}{\sqrt {2 \, c d x + b d}}, x\right ) \]