22.158 Problem number 1400

\[ \int \frac {(c e+d e x)^{11/2}}{\sqrt {1-c^2-2 c d x-d^2 x^2}} \, dx \]

Optimal antiderivative \[ \frac {30 e^{\frac {11}{2}} \EllipticF \left (\frac {\sqrt {d e x +c e}}{\sqrt {e}}, i\right )}{77 d}-\frac {18 e^{3} \left (d e x +c e \right )^{\frac {5}{2}} \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}{77 d}-\frac {2 e \left (d e x +c e \right )^{\frac {9}{2}} \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}{11 d}-\frac {30 e^{5} \sqrt {d e x +c e}\, \sqrt {-d^{2} x^{2}-2 c d x -c^{2}+1}}{77 d} \]

command

integrate((d*e*x+c*e)^(11/2)/(-d^2*x^2-2*c*d*x-c^2+1)^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ -\frac {2 \, {\left ({\left (7 \, d^{6} x^{4} + 28 \, c d^{5} x^{3} + 3 \, {\left (14 \, c^{2} + 3\right )} d^{4} x^{2} + 2 \, {\left (14 \, c^{3} + 9 \, c\right )} d^{3} x + {\left (7 \, c^{4} + 9 \, c^{2} + 15\right )} d^{2}\right )} \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} \sqrt {d x + c} e^{\frac {11}{2}} + 15 \, \sqrt {-d^{3} e} e^{5} {\rm weierstrassPInverse}\left (\frac {4}{d^{2}}, 0, \frac {d x + c}{d}\right )\right )}}{77 \, d^{3}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (-\frac {{\left (d^{5} e^{5} x^{5} + 5 \, c d^{4} e^{5} x^{4} + 10 \, c^{2} d^{3} e^{5} x^{3} + 10 \, c^{3} d^{2} e^{5} x^{2} + 5 \, c^{4} d e^{5} x + c^{5} e^{5}\right )} \sqrt {-d^{2} x^{2} - 2 \, c d x - c^{2} + 1} \sqrt {d e x + c e}}{d^{2} x^{2} + 2 \, c d x + c^{2} - 1}, x\right ) \]