23.157 Problem number 1630

\[ \int \frac {(b+2 c x) \sqrt {a+b x+c x^2}}{(d+e x)^{3/2}} \, dx \]

Optimal antiderivative \[ \frac {2 \left (2 c e x -3 b e +8 c d \right ) \sqrt {c \,x^{2}+b x +a}}{3 e^{2} \sqrt {e x +d}}-\frac {8 \left (-b e +2 c d \right ) \EllipticE \left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {-\frac {2 e \sqrt {-4 a c +b^{2}}}{2 c d -e \left (b +\sqrt {-4 a c +b^{2}}\right )}}\right ) \sqrt {2}\, \sqrt {-4 a c +b^{2}}\, \sqrt {e x +d}\, \sqrt {-\frac {c \left (c \,x^{2}+b x +a \right )}{-4 a c +b^{2}}}}{3 e^{3} \sqrt {c \,x^{2}+b x +a}\, \sqrt {\frac {c \left (e x +d \right )}{2 c d -e \left (b +\sqrt {-4 a c +b^{2}}\right )}}}+\frac {2 \left (16 c^{2} d^{2}+3 b^{2} e^{2}-4 c e \left (-a e +4 b d \right )\right ) \EllipticF \left (\frac {\sqrt {\frac {b +2 c x +\sqrt {-4 a c +b^{2}}}{\sqrt {-4 a c +b^{2}}}}\, \sqrt {2}}{2}, \sqrt {-\frac {2 e \sqrt {-4 a c +b^{2}}}{2 c d -e \left (b +\sqrt {-4 a c +b^{2}}\right )}}\right ) \sqrt {2}\, \sqrt {-4 a c +b^{2}}\, \sqrt {-\frac {c \left (c \,x^{2}+b x +a \right )}{-4 a c +b^{2}}}\, \sqrt {\frac {c \left (e x +d \right )}{2 c d -e \left (b +\sqrt {-4 a c +b^{2}}\right )}}}{3 c \,e^{3} \sqrt {e x +d}\, \sqrt {c \,x^{2}+b x +a}} \]

command

integrate((2*c*x+b)*(c*x^2+b*x+a)^(1/2)/(e*x+d)^(3/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {2 \, {\left ({\left (16 \, c^{2} d^{3} + {\left (b^{2} + 12 \, a c\right )} x e^{3} - {\left (16 \, b c d x - {\left (b^{2} + 12 \, a c\right )} d\right )} e^{2} + 16 \, {\left (c^{2} d^{2} x - b c d^{2}\right )} e\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right ) + 24 \, {\left (2 \, c^{2} d^{2} e - b c x e^{3} + {\left (2 \, c^{2} d x - b c d\right )} e^{2}\right )} \sqrt {c} e^{\frac {1}{2}} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c^{2} d^{2} - b c d e + {\left (b^{2} - 3 \, a c\right )} e^{2}\right )} e^{\left (-2\right )}}{3 \, c^{2}}, -\frac {4 \, {\left (2 \, c^{3} d^{3} - 3 \, b c^{2} d^{2} e - 3 \, {\left (b^{2} c - 6 \, a c^{2}\right )} d e^{2} + {\left (2 \, b^{3} - 9 \, a b c\right )} e^{3}\right )} e^{\left (-3\right )}}{27 \, c^{3}}, \frac {{\left (c d + {\left (3 \, c x + b\right )} e\right )} e^{\left (-1\right )}}{3 \, c}\right )\right ) + 3 \, {\left (8 \, c^{2} d e^{2} + {\left (2 \, c^{2} x - 3 \, b c\right )} e^{3}\right )} \sqrt {c x^{2} + b x + a} \sqrt {x e + d}\right )}}{9 \, {\left (c x e^{5} + c d e^{4}\right )}} \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (\frac {\sqrt {c x^{2} + b x + a} {\left (2 \, c x + b\right )} \sqrt {e x + d}}{e^{2} x^{2} + 2 \, d e x + d^{2}}, x\right ) \]