36.6 Problem number 12

\[ \int \frac {1}{\left (1+\sqrt {3}-x\right ) \sqrt {-1+x^3}} \, dx \]

Optimal antiderivative \[ -\frac {3^{\frac {1}{4}} \left (1-x \right ) \EllipticF \left (\frac {1-x +\sqrt {3}}{1-x -\sqrt {3}}, 2 i-i \sqrt {3}\right ) \left (\frac {\sqrt {6}}{2}-\frac {\sqrt {2}}{2}\right ) \sqrt {\frac {x^{2}+x +1}{\left (1-x -\sqrt {3}\right )^{2}}}}{3 \sqrt {x^{3}-1}\, \sqrt {\frac {-1+x}{\left (1-x -\sqrt {3}\right )^{2}}}}-\frac {\arctanh \left (\frac {\left (1-x \right ) \sqrt {3+2 \sqrt {3}}}{\sqrt {x^{3}-1}}\right )}{\sqrt {9+6 \sqrt {3}}} \]

command

integrate(1/(1-x+3^(1/2))/(x^3-1)^(1/2),x, algorithm="fricas")

Fricas 1.3.8 (sbcl 2.2.11.debian) via sagemath 9.6 output

\[ \frac {1}{12} \, \sqrt {2 \, \sqrt {3} - 3} \log \left (\frac {x^{8} + 16 \, x^{7} + 112 \, x^{6} + 16 \, x^{5} + 112 \, x^{4} - 224 \, x^{3} + 64 \, x^{2} + 4 \, {\left (2 \, x^{6} + 18 \, x^{5} + 42 \, x^{4} + 8 \, x^{3} + \sqrt {3} {\left (x^{6} + 12 \, x^{5} + 18 \, x^{4} + 16 \, x^{3} - 12 \, x^{2} - 8\right )} - 24 \, x + 8\right )} \sqrt {x^{3} - 1} \sqrt {2 \, \sqrt {3} - 3} + 16 \, \sqrt {3} {\left (x^{7} + 2 \, x^{6} + 6 \, x^{5} - 5 \, x^{4} + 2 \, x^{3} - 6 \, x^{2} + 4 \, x - 4\right )} - 128 \, x + 112}{x^{8} - 8 \, x^{7} + 16 \, x^{6} + 16 \, x^{5} - 56 \, x^{4} - 32 \, x^{3} + 64 \, x^{2} + 64 \, x + 16}\right ) + \frac {1}{3} \, \sqrt {3} {\rm weierstrassPInverse}\left (0, 4, x\right ) \]

Fricas 1.3.7 via sagemath 9.3 output

\[ {\rm integral}\left (-\frac {\sqrt {x^{3} - 1} {\left (x + \sqrt {3} - 1\right )}}{x^{5} - 2 \, x^{4} - 2 \, x^{3} - x^{2} + 2 \, x + 2}, x\right ) \]